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Talk Highlights

Significant trends emerging in HPC
— Architectural complexity: multicore, heterogeneity, power mgt
— Scale
— Application complexity: multiphase, multiscale, multiresoution
Taken together, these trends can create a widening gap between
expected and realized performance
Performance engineering is critical to address this gap
— Measurement
— Prediction
— Optimization
Some performance engineering solutions that help to close this gap
— Engagement
* Frequent interaction between applications teams and performance experts

— Tools

» Instrumentation, collection, and analysis tools for measurement
— Automatic optimization

« Static and dynamic optimization of applications and libraries

» Integrate of performance engineering into application/system lifecycle
— Feedback to architects and system software designers



Years of Prosperity

Increasing large-scale
parallelism

Increasing number of
transistors

Increasing clock S_peed LLNL System Lifetimes. M. McCoy
Stable programming models
and languages



‘New’ constraints for architectures

= Power
= Heat / thermal

envelope
= Signaling
= Packaging

= |nstruction level
parallelism

= Memory, I/O,
Interconnect latency
and bandwidth

= Market trends favor
‘good enough’
computing —
Economist



Architectural Complexity — Multicore
AMD quad-core due on Sept 10

= 4 cores
= Enhanced FPUs

= Shared resources
— L3 cache
— Hypertransport links
— Memory controllers

= |[ndependent clock
frequencies



Architectural Complexity — Multicore
Core count is easy to increase. Resource contention is a

challenge!
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Specialization

Architectures target specific workloads: games, graphics, business, encryption,
media
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System Scale
Interconnect design and cost limits system scale
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Performance Engineering encompasses
Measurement, Prediction, and Optimization
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Runtime (sec)

STI Cell Demonstrates these Sensitivities
GPUs, FPGASs, and other devices are similar
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HPC Challenge Benchmarks Demonstrate these

Issues
HRCC onCray X1 =Baseline v Optimized
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Application Diversity

= Multi-phase, multi-scale applications
present challenges in performance
engineering
— Multiple languages
— Multiple phases of physics, chemistry
— Adaptive meshing, multigrid solvers, etc

= Applications teams know this best!



Application Diversity

Dwarfs illustrate some dimensions of this diversity

Dense

Sparse

Sclence | Coqe | Structured | Unstructured | cor | inear | Linear | Partices | Monte
Algebra | Algebra

Accelerator

Physics 3P X X
Astrophysics | CHIMERA X X X X
Astrophysics | VULCAN/2D X X

Biology LAMMPS X X
Chemistry MADNESS X X

Chemistry NWCHEM X X

Chemistry OReTran X X X

Climate CAM X X X

Climate POP/CICE X X X

Climate MITgecm X X X
Combustion 53D X

Fusion AORSA X X X

Fusion GIC X X X X
Fusion GYRO X X X X

Geophysics | PFLOTRAN X X X

Materials

Science QMC/DCA X X
Materials

Science QBOX X X X
Nanoscience CASINO X X
Nanoscience LSMS X X

Nuclear | o e wrrNX X X X

Energy

Nuclear

Physics CcsD X

QCD MILC X X
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Observations

= Take together, these three
trends have the potential for
creating a widening gap
between expected and
realized performance

= Performance engineering is Prediction Measurement
critical to address this gap

— Measurement
— Prediction
— Optimization

= \We must feed this information Optimization
back to architects and system
software designers



Some Performance Engineering Solutions

= Engagement

— Frequent interaction between applications teams and
performance experts

= Tools
— Instrumentation, collection, and analysis tools for measurement
= Automatic optimization

— Static and dynamic optimization of applications and libraries

— Integrate of performance engineering into application/system
lifecycle

= Feedback to architects and system software designers
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Engagement

: SCIDAC PERI

= Application Engagement

— Work directly with DOE
computational scientists

— Ensure successful
performance porting of
scientific software

— Focus PERI research on real
problems

= Application Liaisons

— Build long-term personal
relationships with PERI
researchers and scientific
code teams

= Tiger Teams

— Focus on DOE'’s highest
priorities
» SciDAC-2
 INCITE

See www.peri-scidac.org for more info.

Optimizing arithmetic kernels

Maximizing scientific throughput
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Tools: Software Development Tools
for Petascale Computing

= Assembled ~60 experts in software development
tools to identify challenges for Petascale

= See Fred Johnson’s presentation
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Tools: Traditional Performance Analysis of
Communication Operations

= Many MPI tools use tracing
— Produces very detailed information about communication activity
— lllustrates dependencies among tasks
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Tools: Timeline with 1024 tasks

Is this application executing efficiently?

How will this work for 64x or 128x??




Tools: Automatic Classification for
Communication Performance Analysis

= Use decision tree classification (a supervised learning
technique) to classify application’s messages

automatically

= Compare an application’s message operations to
‘normal’ communication for a particular MPI confiquration

»Modeling Phase (once)

-Use benchmarks to generate
decision tree

-Both efficient and inefficient

»Classification Phase (many)
-Execute application

-Analyze application trace with
classifier based on decision tree

Modeling Phase
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Automatic Optimization: SciDAC PERI
Framework

Long-term goals for PERI

Automate the process of tuning
software to maximize its
performance

Build upon forty years of
human experience and recent
success with libraries

— PHIPAC, ATLAS, FFTW,
SPIRAL, SPOOLES

Reduce the performance

portability challenge facing
computational scientists

Address the problem that
performance experts are in
short supply

Source Code

Guidance
* measurements

+ models

Zode Generation

Code Generation

1

Code Selection |+

= » hardware i nformation s————
Triage + sample input
l + annotations
* assertions
Analysis
Transformations Domain-Specific

External
] Software

Application Assembly

~ Runtime Performance Data |

@ .~ Production Runtime
Execution Adaptation

:

Persistent
Database

PERI automatic tuning framework



Automatic Optimization: Engineering Applications
for Performance Throughout their Lifecycle

= Use performance assertions to verify the performance explicitly

1 pa_start(&pa, "$nFlops™, PA AEQ, "11 * %g * %g", &ym, &xm);
2 for =ys; J<ys+ym; j++) {

3 for (i=xs; I<xs+xm; i++) {

4: iITA=01]]1J=01]] 1=M-11]] ] == My-1) {
5: o101 = xOg1Lil;

6: } else {

7 u = xO1Li];

8 UXX = (two*u - x[jJ1Ii-1] - x[j]1L1+1])*hydhx;
9: uyy = (two*u - x[J-11I1] - x[j+1][1])*hxdhy;
10: f[J1[i] = uxx + uyy - sc*PetscExpScalar(u);
11: }
12: }
13: }
14: pa_end(pa);
15: PetscLogFlops(11*ym*xm);

= EXxpression
— "$nFlops'™, PA_AEQ, "11 * %g * %g', &ym, &xm

— Empirically measure number of floating point operations with
iInstrumentation

— Test approximate equality (£10%) to *11 * ym * xm” ?
= Empirical measurements verify performance model
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Many Other Performance Engineering
Topics...

= Performance prediction

— Analytical modeling

— Simulation

— Hybrid

— Historical predictions
= New programming models, languages
= Reliability, correctness, fault tolerance
= |O

= Cooperation with vendors on hardware and
software architecture and performance
engineering support

= Etc...
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Summary

Significant trends emerging in HPC
— Architectural complexity: multicore, heterogeneity, power mgt
— Scale
— Application complexity: multiphase, multiscale, multiresoution
Taken together, these trends can create a gap between expected
and realized performance
Performance engineering is critical to bridging this gap
— Measurement
— Prediction
— Optimization
— Feedback to architects and system software designers
Some performance engineering solutions that help to close this gap
— Engagement
* Frequent interaction between applications teams and performance experts

— Tools
* Instrumentation, collection, and analysis tools for measurement
— Automatic optimization
« Static and dynamic optimization of applications and libraries
» Integrate of performance engineering into application/system lifecycle

— Feedback to architects and system software designers
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